# NOTE: also change version in ../__init__.py def get_version_major(): return 0 def get_version_minor(): return 0 def get_version_patch(): return 3 def get_version_string(): return f"{get_version_major()}.{get_version_minor()}.{get_version_patch}" def prefix(): return "ABC3D" import time import datetime from mathutils import ( Vector, ) def get_timestamp(): return datetime.datetime \ .fromtimestamp(time.time()) \ .strftime('%Y.%m.%d-%H:%M:%S') def mapRange(in_value, in_min, in_max, out_min, out_max, clamp=False): output = out_min + ((out_max - out_min) / (in_max - in_min)) * (in_value - in_min) if clamp: if out_min < out_max: return min(out_max, max(out_min, output)) else: return max(out_max, min(out_min, output)) else: return output import warnings import functools def deprecated(func): """This is a decorator which can be used to mark functions as deprecated. It will result in a warning being emitted when the function is used.""" @functools.wraps(func) def new_func(*args, **kwargs): warnings.simplefilter('always', DeprecationWarning) # turn off filter warnings.warn("Call to deprecated function {}.".format(func.__name__), category=DeprecationWarning, stacklevel=2) warnings.simplefilter('default', DeprecationWarning) # reset filter return func(*args, **kwargs) return new_func import subprocess import sys def open_file_browser(directory): if sys.platform=='win32': os.startfile(directory) elif sys.platform=='darwin': subprocess.Popen(['open', directory]) else: try: subprocess.Popen(['xdg-open', directory]) except OSError: pass # er, think of something else to try # xdg-open *should* be supported by recent Gnome, KDE, Xfce def printerr(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) # # Evaluate a bezier curve for the parameter 0<=t<=1 along its length # def evaluateBezierPoint(p1, h1, h2, p2, t): # return ((1 - t)**3) * p1 + (3 * t * (1 - t)**2) * h1 + (3 * (t**2) * (1 - t)) * h2 + (t**3) * p2 # # Evaluate the unit tangent on a bezier curve for t # def evaluateBezierTangent(p1, h1, h2, p2, t): # return ( # (-3 * (1 - t)**2) * p1 + (-6 * t * (1 - t) + 3 * (1 - t)**2) * h1 + # (-3 * (t**2) + 6 * t * (1 - t)) * h2 + (3 * t**2) * p2 # ).normalized() # def calculateBezierLength(p1, h1, h2, p2, resolution=20): # step = 1/resolution # previous_p = p1 # length = 0 # for i in range(0, resolution): # t = (i + 1) * step # p = evaluateBezierPoint(p1, h1, h2, p2, t) # length += p.distance(previous_p) # previous_p = p # return length