font3d_blender_addon/common/utils.py
2024-08-14 14:57:34 +02:00

87 lines
2.7 KiB
Python

def get_version_major():
return 0
def get_version_minor():
return 0
def get_version_patch():
return 1
def get_version_string():
return f"{get_version_major()}.{get_version_minor()}.{get_version_patch}"
def prefix():
return "ABC3D"
import time
import datetime
from mathutils import (
Vector,
)
def get_timestamp():
return datetime.datetime \
.fromtimestamp(time.time()) \
.strftime('%Y.%m.%d-%H:%M:%S')
def mapRange(in_value, in_min, in_max, out_min, out_max, clamp=False):
output = out_min + ((out_max - out_min) / (in_max - in_min)) * (in_value - in_min)
if clamp:
if out_min < out_max:
return min(out_max, max(out_min, output))
else:
return max(out_max, min(out_min, output))
else:
return output
import warnings
import functools
def deprecated(func):
"""This is a decorator which can be used to mark functions
as deprecated. It will result in a warning being emitted
when the function is used."""
@functools.wraps(func)
def new_func(*args, **kwargs):
warnings.simplefilter('always', DeprecationWarning) # turn off filter
warnings.warn("Call to deprecated function {}.".format(func.__name__),
category=DeprecationWarning,
stacklevel=2)
warnings.simplefilter('default', DeprecationWarning) # reset filter
return func(*args, **kwargs)
return new_func
def open_file_browser(directory):
if sys.platform=='win32':
os.startfile(directory)
elif sys.platform=='darwin':
subprocess.Popen(['open', directory])
else:
try:
subprocess.Popen(['xdg-open', directory])
except OSError:
pass
# er, think of something else to try
# xdg-open *should* be supported by recent Gnome, KDE, Xfce
# # Evaluate a bezier curve for the parameter 0<=t<=1 along its length
# def evaluateBezierPoint(p1, h1, h2, p2, t):
# return ((1 - t)**3) * p1 + (3 * t * (1 - t)**2) * h1 + (3 * (t**2) * (1 - t)) * h2 + (t**3) * p2
# # Evaluate the unit tangent on a bezier curve for t
# def evaluateBezierTangent(p1, h1, h2, p2, t):
# return (
# (-3 * (1 - t)**2) * p1 + (-6 * t * (1 - t) + 3 * (1 - t)**2) * h1 +
# (-3 * (t**2) + 6 * t * (1 - t)) * h2 + (3 * t**2) * p2
# ).normalized()
# def calculateBezierLength(p1, h1, h2, p2, resolution=20):
# step = 1/resolution
# previous_p = p1
# length = 0
# for i in range(0, resolution):
# t = (i + 1) * step
# p = evaluateBezierPoint(p1, h1, h2, p2, t)
# length += p.distance(previous_p)
# previous_p = p
# return length